If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2+6q-7=0
a = 2; b = 6; c = -7;
Δ = b2-4ac
Δ = 62-4·2·(-7)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{23}}{2*2}=\frac{-6-2\sqrt{23}}{4} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{23}}{2*2}=\frac{-6+2\sqrt{23}}{4} $
| 1/2x=-61/6 | | 80+x-0.2x=0 | | 3m^2+3m-90=0 | | 8t^2-16t-24=0 | | x=12=6 | | -6-3x=-39 | | x3+7x2-18x=0 | | 19x-2-7x=31+6×-15 | | ?x10=276 | | 2(x-1)+2=4x-6 | | 11(2x-1)=8(2x+1)+29 | | 13x+23=12x+16 | | 2x-4=5x+6/2 | | -20=41p+19 | | 4x4-9=0 | | -20=-41p+20 | | 4x4-9=35 | | 4(x+2)(x+3)=35 | | 1/2x+5=23 | | 12v-6=3(v+4)=54 | | 12v-6=3(v=4)=54 | | 3=1.07^x | | 7v+1÷18=5/6 | | (x+20)^2=15 | | 153=2(z+z) | | 1/9(2m-16)=1/3(2m=4 | | z+4/z=-5 | | 2/3+4=2x | | -3=-3/2x+3 | | 2/3x4=2x | | 21-2m=23 | | 264=111-y |